The New York Times Building

New York, NY

IPD/BIM Thesis Technical Report #1

Benjamin R. Barben, Erika L. Bonfanti, & Andres R. Perez Structural Option

> Faculty Consultant: Dr. Andres Lepage October 5th, 2009

TABLE OF CONTENTS

EXECUTIVE SUMMARY	2
INTRODUCTION	
STRUCTURAL SYSTEM	4
Foundation	4
Floor System	4
Columns	5
Vierendeel Frame	5
Lateral System	6
MATERIAL STRENGTHS	9
LOADINGS	
Gravity Loads	
Dead Loads	
Live Loads	11
Snow Loads	
Lateral Loads	13
Wind Loads	13
Seismic Loads	
Miscellaneous Loads	23
TYPICAL FLOOR FRAMING SPOT CHECKS	24
Metal Decking	24
Typical Composite Beam	25
Typical Composite Girder	25
Typical Column	
ANALYSIS & CONCLUSIONS	
APPENDIX A: LATERAL SYSTEMS	
APPENDIX B: TYPICAL BAY SPOT CHECKS	
APPENDIX C: TYPICAL COLUMN CHECKS	
APPENDIX D: WIND ANALYSIS	
APPENDIX E: SEISMIC ANALYSIS	
APPENDIX F: SITE PHOTOS	

EXECUTIVE SUMMARY

The purpose of the first technical report is to analyze and compile the existing structural conditions for the New York Times Headquarters in New York City. The building houses the New York Times newsroom, retail spaces along its base, as well as New York Times and rentable corporate offices in the tower. As a result of an architectural competition, Renzo Piano's design intends to exemplify transparency and lightness through every detail, as well as become a signature building in the New York City skyline. Exposed structural elements and connections were designed with great attention to the overall appearance of the building.

Gravity, wind, and seismic systems were studied in detail to yield a basis of design for the structure as produced by Thornton Tomasetti. Codes and methods applied to the analyses are outlined within the report, as well as a more comprehensive discussion and depiction of each system and other elements requiring future consideration. Calculations are also provided in the appendices for reference.

Gravity loads were compiled and analyzed using ASCE 7-05 and IBC 2006; both codes are more recent than the Building Code of the City of New York used for the original design. A typical bay was investigated to compare beam, girder, and column sizes for accuracy using assumed dead and live loads. Values obtained from analysis were slightly lower than those used in the original design; this could be due to a difference in live load reductions or an increase in member sizes due to lateral forces. A wind analysis was completed by referencing ASCE 7-05; however, Thornton Tomasetti performed wind tunnel tests on the structure, possibly leading to different final lateral values. Seismic forces were obtained from Chapters 11 and 12 of ASCE 7, but did not control laterally over wind.

In addition to the structural investigation of the gravity and lateral loads, parameters such as thermal loading, building drift, and cantilevers must be considered to fully understand the structure of the New York Times Headquarters. Although these factors and elements are not within the scope of this report, they are presented as essential future considerations.

INTRODUCTION

The New York Times Headquarters Building is home to the New York Times newsroom and 26 floors of Times offices, as well as several law firms, their offices leased through Forest City Ratner. It was intended to be a flagship building promoting sustainability, lightness, and transparency. The architectural façade reflects the ever-changing environment surrounding the building, an appropriate acknowledgement of the heart of New York City.

The building rises 1046 feet above Eighth Avenue between 41st and 42nd Streets. It has one level below grade. The ground level contains a lobby, retail space, and a glass-enclosed garden. New York Times' newsroom occupies the entire fivestory podium of the structure, and the tower ascends above the podium an additional 48 stories. Story heights average approximately 13 feet 9 inches in the tower, lending a great view to the open office plans. At the mechanical floors on levels 28 and 51, though, the floor height is approximately 27 feet to accommodate equipment and two-story outriggers.

The steel structural system is comprised of composite floor beams and columns configured as shown in Figure 1, with lateral chevron and K braces in both the East-West and North-South directions. Foundations are a combination of concrete spread footings and caissons to develop the required capacity. Many structural elements are also architectural details, including the exposed X bracing on the exterior of the structure and the built-up columns at the corner notches. Overall, the building exhibits ingenuity in design and construction, with close attention paid to every detail.

STRUCTURAL SYSTEM

Foundation

The foundation of the New York Times Headquarters combines typical spread footings with caissons to achieve its maximum axial capacity. Below the building's 16-foot cellar, the tower and podium mostly bear on 20 to 40 ton rock, Class 1-65 and 2-65 per the New York City Building Code. However, a core sample taken just before finalizing the site investigation report indicated that rock at the southeast corner of the tower only had an 8 ton per square foot capacity, Class 4-65. At the seven columns that fall within this area, indicated in red on Figure 2, 24-inch diameter concrete-filled steel caissons were used to replace the original foundation designs. Each caisson was designed to support a load of 2,400 kips with 6,000 psi concrete.

Under the other 21 columns (indicated on Figure 2 in teal), spread footings with a compressive strength of 6,000 psi are used to support the loads. The areas depicted in blue represent the two cantilevered sections of the tower. The columns which fall in these areas do not directly transfer load to the ground which removes the need for footings at these locations.

Assumed Spread Footing Location **Cantilevered Area** Subway **Figure 2: Foundation Locations** eastern sides of the New York Times Building. However, this is not a major site restriction since the transit system passes below Eighth Avenue and 41st Street and not directly beneath the structure. But, vibration

Key:

0

0-

0-

0

Floor System

The floor system is a composite system with a typical bay size of 30'-0"x 40'-0" with 2 1/2" normal weight concrete and 3" metal deck, typically spanning 10'-0" from W12x19 to W18x35 infill beams. The W12x19 and W18x35 beams span into W18x40 girders. The girders frame into the various built-up columns, box columns along the exterior and built-up non-box columns in the core. Framing of the core consists of W12 and HSS shapes framing into W14 and W16 shapes which frame into W33 girders that frame into the core columns.

effects on the foundation and building structure may have had an impact on the design.

In the New York Times spaces, the structural slab is 16 inches below the finish floor and the spandrel panel, due to the raised

Figure 3: 'Dog-leg' beam connection

Assumed Caisson Location

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

floor system for the under floor mechanical systems. The solution to this issue was to create a 'dog leg' at the end connection of the beam, depicted in Figure 3 on the previous page.

Columns

The 30" by 30" box columns (Figure 4) at the exterior notches of the tower consist of two 30 inch long flange plates and two web plates inset 3 inches from the exterior of the column on either side. The web plates decrease in thickness from 7 inches at the bottom of the building to adjust to the loads at each level. The flange plates decrease in thickness to relate to the architectural vision of the tower. Although the yield strength of the plates also varies with tower height, the strength was assumed to be a uniform 50 ksi for calculations. Interior columns are a combination of built-up sections and rolled shapes. Column locations stay consistent throughout the height of the building, and every column is engaged in the lateral system.

Figure 4: Box Column Modeled in Revit Structure

Vierendeel Frame

A Vierendeel frame was used by Thornton Tomasetti as a combined solution at the 20 foot cantilever sections of the tower. Renzo Piano did not want columns obstructing the glass storefronts at the ground level, so these sections were cantilevered from the main structure. A unique way to control deflections in the middle beams of the cantilevered section, the ladder-like frame ties together the beams at each level. It connects to 28th and 52nd floor outriggers; these outriggers effectively transfer loads from the frame to the core of the tower. The beams are also moment connected to each vertical member. See Figures 17 and 19 in Appendix A for exact locations.

At the exterior beam lines of the cantilever, steel rods were connected from the columns to the ends of the beams to control deflection. This allowed the beams to be designed only for strength, avoiding bulky exterior members.

Lateral System

The main lateral load resisting system for the tower of the New York Times Building consists of a centralized steel braced frame core with outriggers on the two mechanical floors (Levels 28 and 51). The structural core consists of chevron, knee, and single diagonal bracing which surrounds elevator shafts, MEP shafts, and stair wells. At this time, the member sizes of these braces have yet to be disclosed. The core configuration remains consistent from the ground level to the 27th floor as shown in Figure 5. But above the 28th floor, the low rise elevators were no longer required. In order to optimized the rentable space on the upper levels of the tower, the number of bracing lines in the North-South direction were reduced from two to one (Figure 6). Please refer to Figures 7 and 8 to view the typical core bracing configurations.

The outriggers on the mechanical floors consist of K-braces (Figure 19 in Appendix A) and single diagonal braces. The outrigger system was designed to increase the efficiency and redundancy of the tower by engaging the perimeter columns into the lateral system. Please refer to Appendix A to view the framing plans and bracing elevations of the outrigger system.

Single Diagonal Bracing Pre-Tensioned Steel Rod X-Bracing Chevron & Open Knee Bracing

Figure 7: Typical Core N/S Core Bracing Elevation

Figure 8: Typical Core E/W Core Bracing Elevation

During the design of the tower, the engineers at Thornton Tomasetti sized the members of the main lateral force resisting system merely for strength. In order to increase stiffness and meet deflection criterion, the structural engineers utilized the double story steel rod X-braces (original to Renzo Piano's exterior design) instead of increasing the member sizes of the main lateral force resisting system. These X-braces can be seen in Figure 29 of Appendix F and in Figures 5 and 6 above. The high strength steel rods transition from 2.5" to 4" in diameter and were prestressed to 210 kips. This induced tensile load prevents the need for large compression members which would not conform to the architectural vision of the exterior.

Although the X-braces did reduce the need for an overall member size increase, the lateral system still did not completely conform to the deflection criterion. Therefore, some of the 30" by 30" base columns were designed as built-up solid sections which reduced the building drift caused by the building overturning moment. After combining these solid base columns and the X-braces with the main lateral force resisting system, the calculated deflection of the tower due to wind was L/450 with a 10 year return period and a building acceleration of less than 0.025g for non-hurricane winds.

According to information obtained from the structural engineer, the podium of the New York Times Building was designed with a separate lateral system. Though information about the podium was not disclosed by the owner, an educated guess can be made about its lateral system. The podium contains the New York Times Newsroom; therefore it can be assumed that steel bracing, which would cut down on the usable floor space, would not be used. Also, the use of concrete shear walls would go against the architect's "transparent" building design. Therefore, it can be assumed that the lateral system of the podium is designed as a steel moment resisting frame.

CODES AND REFERENCES

Design Codes:

National Model Code:

1968 Building Code of the City of New York

Structural Standards:

ASCE 7-98, Minimum Design Loads for Buildings and other Structures

Structural Design Codes:

AISC – LRFD, Steel Construction Manual 2nd edition, American Institute of Steel Construction, 1998

National Building Code of Canada, 1995

Uniform Building Code, 1997

Design Deflection Criteria:

Lateral Deflections:

Total building sway deflection for ten year wind loading is limited to H/450

Thermal Deflections:

The shortening and elongating effects due to thermal fluctuations is designed to L/300.

At this point in time additional gravity and lateral deflections were not disclosed.

Thesis Codes:

National Model Code:

2006 International Building Code

Structural Standards:

ASCE 7-05, Minimum Design Loads for Buildings and other Structures

Design Codes:

AISC – LRFD, Steel Construction Manual 13th edition, American Institute of Steel Construction

MATERIAL STRENGTHS

Structural Steel:	
Wide Flanges Shapes	ASTM A572 or A992, Grade 50
Built-Up Sections	ASTM A572, Grade 50 & Grade 42
HSS Shapes	ASTM A500 Grade B
Diagonal & X-Braced Rods	ASTM A572, Grade 65
Connection Plates	ASTM A36
Concrete:	$P_{\rm c} = 6000 {\rm psi}$
Spread Footings	$f_c = 6000 \text{ psi}$
Slabs on Deck (normal weight concrete)	
Metal Decking:	
3" Composite Deck	$\dots F_{\rm y} = 40 \text{ ksi}$

At this point in time shear studs, welds, bolts, and reinforcement strengths were not disclosed by the designer.

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

LOADINGS

ASCE 7-05 and Thornton Tomasetti provided guidance to determine loading for both gravity and lateral loads.

Gravity Loads

Dead Loads

Typical Tower Floor Dead Load			
Load Description	Design Load		Reference
5.5" Slab with 20 GA 3" Composite Metal Deck	53	psf	Thornton Tomasetti, Kyle Krall &
Vulcraft Deck Type: 3VL20, Max unshored clear			Vulcraft Catalog page 48
span is 11'-9" with a capacity of 127 psf (50+3			
for deck)			
Ceiling (Floors have ACT, Drywall, and Special	5	psf	Thornton Tomasetti, Kyle Krall
Architectural Ceilings)			
Mechanical, Electrical, Plumbing in raised floor	12	psf	Thornton Tomasetti, Kyle Krall
system			
Mechanical, Electrical, Plumbing in ceiling	8	psf	Thornton Tomasetti, Kyle Krall
Allowance for Self Weight of Steel Framing +	15	psf	
Fireproofing(intumescent paint & cementitious)*			
Total Typical Floor Dead Load:	93	psf	
*includes column weight therefore loading only ap	oplied to columns		

Table 4: Turical Tower Flor

Table 1: Typical Tower Floor Dead Load

Typical Tower Mechanical Floor Dead Load			
Load Description	Design Load		Reference
6" Slab with 20 GA 3" Composite Metal Deck, Vulcraft Deck Type: 3VL20, Max unshored clear span is 10'-11" with a capacity of 143 psf	57	psf	Thornton Tomasetti, Kyle Krall & Vulcraft Catalog page 43
Ceiling (Floors have ACT and Special Architectural Ceilings)	5	psf	Thornton Tomasetti, Kyle Krall
Mechanical, Electrical, Plumbing in ceiling	8	psf	Thornton Tomasetti, Kyle Krall
Allowance for Self Weight of Steel Framing + Fireproofing(intumescent paint & cementitious)*	15	psf	
Total Mechanical Floor Dead Load:	93	psf	
*includes column weight therefore loading only applied to columns			

Table 2: Typical Tower Mechanical Floor Dead Load

Exterior Tower Wall System Dead Load (Elevation)			
Load Description	Design Load		Reference
Windows, glass, frame, and sash	8	psf	ASCE7-05, Table C3-1
Horizontal ceramic rods, Aluminum, and frame	5	psf	
Total Exterior Wall Dead Load:	13	psf	

Table 3: Exterior Tower Wall System Dead Load

Since the weight of the curtain wall system is unknown, ASCE7-05 was used to determine the self weight of the glass and the ceramic tube system self weight was conservatively assumed to be lighter than the self weight of the windows. In the spot checks below, it is assumed that the system self weight of the wall creates a uniform load up the building.

Tower Mechanical Area Roof Dead Load			
Load Description	Design Load		Reference
8" Composite Deck	85	psf	
Allowance for Self Weight of Steel Framing + Fireproofing(intumescent paint & cementitious)*	15	psf	
Total Mechanical Area Roof Dead Load:	100	psf	

*includes column weight therefore loading only applied to columns Table 4: Tower Mechanical Area Roof Dead Load

Normal Tower Roof Dead Load			
Load Description	Design Load		Reference
8" Composite Deck	85	psf	
Allowance for Self Weight of Steel Framing + Fireproofing(intumescent paint & cementitious)*	15	psf	
Total Normal Roof Dead Load:	100	psf	

*includes column weight therefore loading only applied to columns

Table 5: Normal Tower Roof Dead Load

Live Loads

Tower Roof Live Load			
Load Description	Design Load	Reference	
Ordinary flat roof:	20 psf	ASCE7-05, Table 4-1	
Roof gardens:	100 psf	ASCE7-05, Table 4-1	
Controlling Roof Live Load:	100 psf		
Table & Tower Boof Live Load			

Table 6: Tower Roof Live Load

Tower Mechanical Area Roof Live Load				
Load Description	Design Load	Reference		
Mechanical, Electrical, Plumbing:	125 psf	ASCE7-05, Table 4-1		
Walkways and elevated platforms:	60 psf	ASCE7-05, Table 4-1		
Controlling Roof Live Load:	125 psf			

Table 7: Tower Mechanical Area Roof Live Load

Since the weight of the mechanical equipment on the roof is unknown, and ASCE7-05 and the Building Code of the City of New York provides no minimum live load, the self weight of the equipment was conservatively assumed to be equivalent to light manufacturing therefore at a minimum the live load should be 125 psf.

Tower Typical Office Area Live Load			
Load Description	Design Load	Reference	
Office:	50 psf	ASCE7-05, Table 4-1	
Partitions:	20 psf	ASCE7-05, Table 4-1	
Total Typical Office Area Live Load:	70 psf		

Table 8: Tower Typical Office Area Live Load

Tower Cafeteria Floor Live Load			
Load Description	Design Load	Reference	
Cafeteria:	100 psf	ASCE7-05, Table 4-1	
Total Cafeteria Floor Live Load:	100 psf		

Table 9: Tower Cafeteria Floor Live Load

Tower Core Floor Live Load			
Load Description	Design Load	Reference	
Lobbies:	100 psf	ASCE7-05, Table 4-1	
Total Core Floor Live Load:	100 psf		
Table 10: Tower Core Floor Live Load			

Tower Mechanical Floor Live Load										
Load Description	Design Load	Reference								
Mechanical Room:	125 psf	ASCE7-05, Table 4-1								
Total Mechanical Floor Live Load:	125 psf									

Since the weight of the mechanical equipment on the mechanical floors is unknown, and ASCE7-05 and the Building Code of the City of New York provides no minimum live load, the self weight of the equipment was conservatively assumed to be equivalent to light manufacturing therefore at a minimum the live load should be 125 psf.

Snow Loads

Snow Load										
Load Description/Factor	Design Load		Reference							
pg=	25	psf	ASCE7-05, Table 7-1							
C _e =	1		ASCE7-05, Table 7-2							
C _t =	1		ASCE7-05, Table 7-3							
I=	1		ASCE7-05, Table 7-4							
C _s =	1		ASCE7-05, Fig. 7-2a							
p _s =0.7CsCeCtIp _g	17.5	psf	ASCE7-05, eq. 7-1 & 7-2							

Table 12: Snow Load Calculation

Since the weight of the snow on the roof is approximately five times smaller compared to the controlling roof live load and mechanical area roof live load, drift was not calculated for this report since it is assumed to not control.

Lateral Loads

Wind Loads

As mentioned, the 1968 Building Code of the City of New York was the governing code for the design of the New York Times Building. During the time of the building's design, this code permitted the use of a simplified approach for calculating the wind loads of all buildings not more that 300 ft within the Borough of Manhattan. Although, for structures which exceeded this height, the code required that wind load be determined using ASCE 7-98. Thornton Tomasetti opted to use a wind tunnel analysis (Method 3) within ASCE 7-98 to determine the wind design loads. However, for the analysis in this report, Method 2 of ASCE 7-05 was used. Unfortunately, the engineers have yet to divulge the results from wind tunnel analysis meaning a true comparison cannot be made to the actual wind design loadings. Also when comparing the Method 2 provisions from ASCE 7-98 to ASCE 7-05, it was found that few changes had been made between the two issues. This means that the results between the two versions would have minimal differences.

A few simplifying assumptions had to be made in order use Method 2 of ASCE 7-05. First of all, the tower was analyzed with a rectangular foot print instead of a cruciform shape. Essentially, area was added at the corners of the façade to simplify the corner notches. Secondly, the screens around each face of the roof top allow air flow through them. To consider the wind load transferred to the lateral system, the screens were first treated as if they were a solid face of the building. After the windward pressure was calculated on this "solid face", a multiplier of 0.5 was implemented to account for the permeability of the screen. The resulting pressure was then transferred to the building. It was also assumed that due to the permeability of the screens, no leeward pressure would develop.

The calculations for the wind pressures, loads, story shears, and overturning moments of the tower are shown in Tables 13 to 15. The pressure and loading diagrams can also be viewed in Figures 9 through 12. The analysis shows that the controlling wind loads are in the East/West direction with a base shear of 9336 kips and overturning moment of 3.7 million ft-kips. This direction was expected to control due to its wider façade face. Please note that the base shears and overturning moments calculated in this report only consider the direct loading from windward and leeward pressures. In the future, a more detailed analysis will have to be performed to consider the building response due to roof suction and side wall suction. Ideally, loading should be obtained from a wind tunnel analysis. For additional calculations as well as the wind analysis of the podium, please refer to Appendix D.

Calculated Wind	Diassuras	in Fast/We	st Direction of Tower	Using Method 2 ASCE	7.05}		
carcellated with	ricssares	in case, we	q, & q, (psf)	Enternal Deserves	Jatamal Daarum	Net Pr	essure
	Height	K a	1.00256K,K,K,V ² I}	(psf)	(psf)	p(p	osf)
	(z)	N ₂		{qGC _a }	q _h GC _{sl} }	+ (GC)	- (GC)
	15.0	0.57	17.40	14.4	9.6	4.8	23.9
	33.4	0.72	21.87	18.1	9.6	8.5	27.6
	48.9	0.81	24.39	20.1	9.6	10.6	29.7
	63.8	0.87	26.31	21.7	9.6	12.2	31.3
	77.8	0.92	27.85	23.0	9.6	13.4	32.6
	86.0"	0.95	28.66	23.7	9.6	14.1	33.2
	91.5	0.96	29.18	24.1	9.6	14.5	33.6
	105.3	1.00	30.37	25.1	9.6	15.5	34.6
	119.0	1.04	31.45	26.0	9.6	16.4	35.5
	132.8	1.07	32.45	26.8	9.6	17.2	36.3
	146.5	1.10	33.37	27.6	9.6	18.0	37.1
	160.3	1.13	34.24	28.3	9.6	18.7	37.8
	174.0	1.16	35.06	28.9	9.6	19.4	38.5
	188.4	1.18	35.86	29.6	9.6	20.0	39.2
	202.1	1.21	36.59	30.2	9.6	20.6	39.8
	215.3	1.23	37.25	30.8	9.6	21.2	40.3
	229.0	1.25	37.92	31.3	96	21.7	40.9
	242.8	1.27	38.55	31.8	9.6	22.3	41.4
	256.5	1.29	39.17	32.3	9.6	22.8	41.9
	270.3	1.31	39.75	32.8	9.6	23.3	42.4
	284.0	1.33	40.32	33.3	9.6	23.7	42.8
	311.5	1.37	40.87	34.2	9.6	24.6	43.7
	325.3	1.38	41.91	34.6	9.6	25.0	44.2
	339.0	1 40	42.41	35.0	9.6	25.5	44.6
	352.8	1.42	42.90	35.4	9.6	25.9	45.0
	366.6	1.14	42.50	35.1	9.6	25.5	45.0
Windward	380.7	1.45	43.84	36.2	9.6	26.6	45.8
	401.8	1.47	44.52	36.8	9.6	27.2	46.3
	122.1	1.19	15.16	37.3	9.6	27.7	46.8
	436.1	1.51	45.58	37.6	9.6	28.1	47.2
	449.9	1.52	45.98	38.0	9.6	28.4	47.5
	463.6	1 52	46 38	२ .२ २	96	28.7	47 9
	477.4	1.54	46.77	38.6	9.6	29.0	48.2
	491.1	1.56	47.15	38.9	9.6	29.4	48.5
	504.9	1.57	47.52	39.2	9.6	29.7	48.8
	518.6	1.58	47.89	39.5	9.6	30.0	49.1
	532.4	1.59	48.25	39.6	9.6	30.3	49.4
	546.1	1.61	48.60	40.1	9.6	30.6	49.7
	559.5	1.62	48.95	40.4	9.6	30.8	50.0
	587.4	1.64	49.62	41.0	9.6	31.4	50.5
	601.1	1.65	49.95	41.2	9.6	31.7	50.8
	614.9	1.65	50.29	41 E	9.6	21.0	51.1
	628.6	1.60	50.60	41.5	9.6	32.3	51.1
	647.4	1.68	50.91	42.0	9.6	32.5	51.5
	656.4	1.00	50.51	42.3	0.6	22.5	51.0 E1.0
	669.6	1.05	51.22	42.3	5.0	32.7	52.0
	683.6	1.71	51.82	42.8	9.6	33.2	52.1
	697.4	1.72	52.12	43.0	9.6	33.5	52.6
	711 5	1.72	52.42	43.3	9.6	33.7	52.8
	732.1	1.75	52.85	43.6	9.6	34.1	53.2
	745.5**	1.75	53.12	43.9	9.6	34.3	53.4
	802***	1.79	54.24	22.4	9.6	12.8	32.0
Leeward	All		53.12	-27.4	9.6	-37.0	-17.8
Side	All		53.12	-38.4	9.6	-47.9	-28.8
Roof	745.5		53.12	-57.0	9.6	-66.6	-47.4

* Top of Podium ** Finish Floor Elevation of Roof

*** Top of Screen Elevaton (0.5 multiplier is applied to account for the ability for wind to pass through the screen.) * $K_1 = 2.01(15/z_g)2/\alpha$ { $z_g < 15ft$ } -or- $K_z = 2.01(z/z_g)2/\alpha$ {15 ft < $z < z_g$ } [T 6-2, ASCE 7-05]

Table 13: Calculated Wind Pressure

Calculated Wind Pressures in North/South Direction of Tower(Using Method 2, ASCE 7-05)									
	Height	К,*	qz & qh (psf) {.00256KzKztKdV ² I}	External Pressure (psf)	Internal Pressure (psf)	Net Pr p (p	essure osf)		
	(2)	-		{qGC _p }	{q _h GC _{pl} }	+ (GC _{pi})	- (GC _{pi})		
	15.0	0.57	17.40	14.6	9.6	5.0	24.2		
	33.4	0.72	21.87	18.3	9.6	8.8	27.9		
	48.9	0.81	24.39	20.4	9.6	10.9	30.0		
	77.8	0.92	27.85	23.4	9.6	13.8	32.9		
	86.0*	0.95	28.66	24.0	9.6	14.5	33.6		
	91.5	0.96	29.18	24.5	9.6	14.9	34.0		
	105.3	1.00	30.37	25.5	9.6	15.9	35.0		
	119.0	1.04	31.45	26.4	9.6	16.8	35.9		
	132.8	1.07	32.45	27.2	9.6	17.6	36.8		
	146.5	1.10	33.37	28.0	9.6	18.4	37.5		
	160.3	1.13	34.24	28.7	9.6	19.2	38.3		
	174.0	1.16	35.06	29.4	9.6	19.8	39.0		
	188.4	1.18	35.86	30.1	9.6	20.5	39.6		
	202.1	1 22	27.25	307	96	21.1	40.2		
	229.0	1.25	37.92	31.8	9.6	22.7	41.4		
	242.8	1.25	38.55	32.3	9.6	22.8	41.9		
	256.5	1.29	39.17	32.8	9.6	23.3	42.4		
	270.3	1.31	39.75	33.3	9.6	23.8	42.9		
	284.0	1.33	40.32	33.8	9.6	24.3	43.4		
	297.8	1.35	40.87	34.3	9.6	24.7	43.8		
	225.2	1.37	41.40	25.1	9.6	25.2	44.5		
	339.0	1.50	42.41	35.1	9.6	25.0	44.7		
	252.9	1.42	42.90	36.0	9.6	26.0	45.5		
	266 E	1.42	42.30	36.0	9.6	20.4	45.5		
Windward	380.7	1.45	43.84	36.8	9.6	27.2	45.3		
	401.8	1.47	44.52	37.3	9.6		46.9		
	422.4	1.49	45.16	37.9	9.6	28.3	47.4		
	436.1	1.51	45.58	38.2	9.6	28.7	47.8		
	449.9	1.52	45.98	38.6	9.6	29.0	48.1		
	463.6	1 53	46 38	38.9	96	293	48 5		
	4//.4	1.54	46.77	39.2	9.6	29.7	48.8		
	491.1	1.56	47.15	39.5	9.6	30.0	49.1		
	518.6	1.57	47.89	40.2	9.6	30.6	49.7		
	532.4	1.59	48.25	40.5	9.6	30.9	50.0		
	546.1	1.61	48.60	40.8	9.6	31.2	50.3		
	559.9	1.62	48.95	41.0	9.6	31.5	50.6		
	573.6	1.63	49.29	41.3	9.6	31.8	50.9		
	587.4	1.64	49.62	41.6	9.6	32.1	51.2		
	601.1	1.05	49.95	41.5	9.6	32.5	51.5		
	614.9	1.65	50.28	42.2	9.6	32.6	51.7		
	642.4	1.67	50.91	42.4	9.6	33.1	52.0		
	656.1	1.69	51.22	43.0	9.6	33.4	52.5		
	669.9	1.70	51.52	43.2	9.6	33.6	52.8		
	683.6	1.71	51.82	43.5	9.6	33.9	53.0		
	697.4	1.72	52.12	43.7	9.6	34.1	53.3		
	711.5	1.73	52.42	11.0	9.6	31.1	53.5		
	732.1	1.75	52.85	44.3	9.6	34.8	53.9		
	745.5**	1.75	53.12	44.5	9.6	35.0	54.1		
Lanuard	819***	1.80	54.57	22.9	9.6	13.3	32.4		
Side	All		53.12	-24.8	9.6	-54.4	-15.3		
Roof	745.5		53.12	-57.9	9.6	-67.5	-48.3		

* Top of Podium

** Finish Floor Elevation of Roof

*** Top of Screen Elevation (0.5 multiplier is applied to account for the ability for

wind to pass through the screen.) * K_z = 2.01(15/zy)2/ α {zg < 15ft} -or- K_z = 2.01(z/zy)2/ α {15 ft < z < zg} [T 6-2, ASCE 7-05]

Table 14: Calculated Wind Pressure

Calculated	Wind Forces on To	ower {Using	; Method 2,	ASCE 7-05}		-		
Level	Height Above Ground	Load	(kips)	Shear	(kips)	Mor (ft-)	nent (ips)	
	(ft)	E/W	N/S	E/W	N/S	E/W	N/S	
2	25.66	181	125	9154	7313	4653	22602	
3	41.13	143	110	9012	7203	5867	15686	
4	56.59	142	110	8870	7094	8035	15568	
5	70.92	137	105	8/32	6987	9733	145/2	
6	86.00	137	106	8595	6881	11813	14616	
7	98.42	140	109	8455	6772	13777	15197	
8	112.17	142	111	8313	6662	15969	15735	
9	125.92	145	112	8168	6550	18203	16239	
10	139.67	147	114	8022	6436	20476	16714	
11	153.42	149	116	7873	6320	22784	17165	
12	167.17	150	117	7723	6203	25126	17594	
13	180.92	159	124	7564	6079	28680	19583	
14	195.83	154	120	7411	5960	30095	18414	
15	208.42	149	116	7262	5844	30963	17217	
16	222.17	157	122	7105	5721	34793	19142	
17	235.92	158	123	6947	5598	37277	19496	
18	249.67	159	124	6788	5474	39786	19839	
19	263.42	161	126	6627	5348	42319	20171	
20	277.17	162	127	6465	5010	44974	20405	
20	290.92	163	127	6302	5094	44074	20495	
22	304.67	164	129	6138	4965	50050	21116	
23	318.42	165	129	5973	4836	52670	21416	
24	332.17	167	130	5806	4705	55309	21708	
25	345.92	168	131	5639	4574	57968	21994	
26	359.67	169	132	5470	4442	60645	22274	
27	373.42	175	137	5295	4305	65272	23944	
27	373.42	2/3	205	5000	4100	101000	50700	
28	415.50	262	205	4774	3897	101622	53782	
29	410.00	173	136	4601	3761	74465	23610	
21	442.00	173	127	4001	2624	77246	23010	
33	445.00	175	120	4427	2406	20042	23800	
32	430.75	175	130	4251	2240	00045	24100	
55	470.50	1/6	158	4075	3348	82850	24347	
34	484.25	1//	139	3898	3209	85684	24585	
35	490.00	170	140	3721	2009	01202	24820	
30	511.75	179	140	3042	2929	91292	25051	
32	525.50	1/9	141	3303	2/88	94254	25278	
30	552.00	100	142	3002	2047	100029	25505	
40	566 75	191	1/2	2820	2304	102051	25042	
40	580.75	182	145	2637	2362	102951	25943	
42	594.25	183	144	2454	2074	108815	26372	
43	608.00	184	145	2271	1930	111766	26582	
44	621.75	185	145	2086	1784	114730	26790	
44	625.50	105	145	1001	1620	117707	26006	
45	035.50	105	146	1901	1039	120505	20990	
46	649.25	186	146	1/15	1492	120695	27199	
47	663.00	187	147	1528	1345	123696	27400	
48	676.75	187	147	1341	1198	126708	27599	
49	690.50	188	148	1153	1050	129732	27795	
50	704.25	193	152	960	898	135997	29368	
51	718.67	284	224	676	674	204265	63635	
Roof	745.50	431	410	245	264	321228	176730	
Screen *	802 & 819	245	264					
Total	802 & 819	9336	7438	9336	7438	3739561	1381094	

* Loads from the screens are superimposed on to the Roof level. Table 15: Wind Loads, Shears & Moments

_22.4 psf	_	
	Roof	
43.9 psf		
43,6 psf	Floor 51	
43,3 psf	Floor 50	
43,0 psf	Floor 49	
42.8 psf	Floor 48	
42.5 psf	Floor 46	
42.3 psf	Floor 45	
42.0 psf	Floor 44	
41.8 psf	Floor 43	
41.5 psf	Floor 42	
41,2 psf	Floor 41	
41.0 psf	Floor 40	
40.7 pst	Floor 39	
40,4 pst	Floor 38	
40,1 psi	Floor 37	
39.5 psf	Floor 36	
39.2 nef	Floor 35	
38.9 psf	Floor 34	
38.6 psf	Floor 33	
38.3 psf	Floor 32	
38.0 psf	Floor 31	
37.6 psf	Floor 30	
07.0(Floor 29	
37,3 pst	Elear 29	
36.8 psf	Floor 28	
36.2 psf	Floor 27	
35.8 psf	Floor 26	
35.4 psf	Floor 24	
35.0 psf	Elgor 23	
34.6 psf	Floor 22	
34.2 psf	Floor 21	
33.7 psf	Floor 20	
33.3 pst	Floor 19	
32.8 pst	Floor 18	
32.3 pst	Floor 17	
31.0 psi	Floor 16	
30.8 pef	Floor 15	
30.2 psf	Floor 14	
29.6 psf	Floor 13	
28.9 psf	Floor 12	
28.3 psf	Floor 11	
27.6 psf	Floor 10	
26.8 psf	Floor 9	
26.0 psf	Floor 8	
25.1 psf	Floor 6	
24.1 psf	Floor 5	
23.0 psf	Floor 4	
21.7 psf	Elocr 3	
20.1 psf	Floor 3	
18.1 psf		
14.4 psf	Floor 1	27.4 psf

Figure 9: East/West Wind Pressure Diagram

	11001
	Eloor 51
284 K	Floor 50
193 k	Floor 49
188 K	Elpor 48
187 K	Floor 47
187 k	Floor 46
186 k	Floor 45
185 k	Floor 44
185 K	Elpor 43
184 k	Floor 42
183 k	Floor 41
182 k	Elpor 40
182 k	Elect 20
181 k	Floor 39
180 k	Floor 37
179 k	Floor 36
179 k	Floor 36
178 k	Fibbr 35
177 k	Fibor 34
176 k	Fibbr 33
175 k	Fibbr 32
174 k	Floor 31
173 k	Floor 30
259 k	Floor 29
262 k	Floor 28
175 k	Floor 27
169 k	Floor 26
168 k	Floor 25
167 k	Floor 24
165 K	Floor 23
163 k	Floor 22
162 k	Floor 21
163 K	Floor 20
161 k	Floor 19
161 K	Floor 18
159 K	Floor 17
158 K	Floor 16
10/ K	Floor 15
149 K	Floor 14
154 K	Floor 13
159 K	Floor 12
150 K	Floor 11
143 K	Floor 10
147 K	Floor 9
140 K	Floor 8
142 K	Floor 7
140 K	Floor 6
137 K	Floor 5
13/ K	Floor 4
142 k	
143 k	Floor 3
181 K	
	Floored

Figure 10: East/West Wind Force Diagram

22.9 psf		
	Poof	
44.5 nsf	Rooi	
	Eleor 51	
44.3 psf	Floor 50	
44.0 psf	Floor 49	
43.7 psf	Floor 48	
43.5 psf	Floor 47	
43.2 psf	Floor 46	
43.0psf	Floor 45	
42,7 psf	Floor 44	
42.4 pst	Floor 43	
42,2 pst	Floor 42	
41,9 psi 41,6 psf	Floor 41	
41.3 pef	Floor 40	
41.0 psi	Floor 39	
40.8 pcf	Floor 38	
40.5 psf	Floor 37	
40.3 psf	Floor 36	
39.9 pef	Floor 35	
39.5 psf	Floor 34	
39.2 psf	Floor 33	
38.9 psf	Floor 32	
38.6 psf	Floor 31	
38.2 psf	Floor 30	
	Floor 29	
37.9 psf		
37.3 psf	Floor 28	
36.8 psf	Floor 27	
36,4 psf	Floor 26	
36.0 psf	Floor 25	
35.6 psf	Floor 24	
35.1 psf	Floor 23	
34,7 psf	FIDDF 22	
34.3 psf	Floor 20	
33,8 psf	Floor 19	
33.3 psf	Floor 18	
32,8 psf	Floor 17	
32,3 psf	Floor 16	
31,8 psf	Floor 15	
31.2 psf	Floor 14	
30.7 psf	Floor 13	
30.1 psf	Floor 12	
29.4 psf	Floor 11	
28.7 psf	Floor 10	
28.0 psf	Floor 9	
27.2 psi	Floor 8	
20.4 psi	Floor 7	
20,0 psi	Floor 6	
23.4 nef	Floor 5	
22 d pef	Floor 4	
	Floor 3	
20,4 psr	Floor 2	
18,3 psf		
14.6 pef	Eloor 1	24.8 nef

Figure 11: North/South Wind Pressure Diagram

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

 	Roof
	Eloor 51
224 k	Eleer 50
152 k	Floor 49
148 k	Floor 48
147 k	Floor 47
147 k	Floor 46
146 k —	Floor 45
146 k	Floor 44
145 k	Elocr 43
145 k	Floor 43
144 k —	Floor 42
143 k 🛶 🗩	Floor 41
143 k	Floor 40
142 k	Floor 39
142 k	Floor 36
141 k	Floor 37
140 k	Floor 36
140 k 🛛 🗖	FIODE 30
139 k	Floor 34
138 k	Floor 33
138 k —	Floor 32
137 k	Floor 31
136 k	Floor 30
203 k	Floor 29
	Elear 26
205 k	Floor 20
137 k	Floor 27
132 k	Floor 26
131 k	Floor 25
130 k	Floor 24
129 k	Floor 23
129 k	Floor 22
128 k	Floor 21
127 k 🛛 🗖	Floor 20
126 k	Floor 19
124 k	Floor 16
123 k 🛛 🗖	Floor 17
122 k	Floor 16
116 k	Floor 15
120 k	Floor 14
124 k	Floor 13
117 k 🛁 🗖	Floor 12
116 k	Floor 11
114 k	Floor 10
112 k	Floor 9
111 k	Floor 8
109 k	Floor 7
106 k	Floor 6
106 k	Floor 5
110 k	Floor 4
440 6	Floor 3
125 4	Fluor 2
	Elect 4
	Floor 1
	1381094 Ft-k

Seismic Loads

To design for seismic loading conditions on the New York Times Headquarters, Thorton Tomasetti used the New York City Building Code as a basis for calculation. To convert the classification to that used in ASCE 7-05, the assumed bearing capacities and N values were compared to ASCE values. For example, the site had 40 ton per square foot rock, which is classified as Class 2-65 Medium Hard Rock in the NYC Building Code. In ASCE 7-05, Site Class A is designated as Hard Rock and Site Class B is designated as Rock. To be conservative, Class 2-65 rock was equated with Site Class B in ASCE. However, in one corner of the site the rock has a bearing capacity of only 8 tons per square foot, Class 4-65. This lower bearing capacity better equated with Site Class C in ASCE 7-05. Therefore, Site Class C was used in the analysis to be conservative.

Calculations of the design spectral response acceleration, using the USGS Ground Motion Parameter Tool and ASCE 7-05, yielded S_{DS} and S_{D1} values that corresponded to Site Class B using Tables 11.6-1 and 11.6-2, which are less conservative than those assumed from Site Class C. Therefore, the remaining seismic values were calculated using Site Class C. The base shear was determined to be 1834 kips, calculated from the effective seismic weight, including the assumed dead loads and partition loads from Tables 1, 3, and 8. The lateral seismic forces at each level increase with elevation, and range from 1.1 kips to 94 kips, as shown in Figure 13 below. The period of the building due to seismic loads was determined to be 2.902 seconds. The Response Modification Coefficient (R) used in calculations was assumed as 3.25, based on ordinary steel concentrically braced frames. This number is a bit conservative, as there is a distribution of different braced frames throughout the tower. In addition, the height of the building was increased slightly to include seismic effects above the roof level, as a contribution of the extended façade. Refer to Tables 26-29 and Figures 27 and 28 of Appendix E for calculation details.

Due to the height and location of the New York Times building, it was expected that the lateral loading due to wind pressure would control over seismic loadings. After comparing the results of the two loading conditions, it was clearly evident that this was the case.

к 🔍	Roof
*>	Floor 51
82.4 k	Flocr 50
79.0 k >	Flocr 49
75.9 K	Floor 46
72.9 K>	Floor 46
67.1 k	Floer 45
64 3 k	Floer 46
61.5 k	Elper 43
58.9k	Floor 42
56.2 k	Flocr 41
53.6 k	Floor 40
51.1 k	Floor 39
48.7 k.	Floer 38
46.3 k	Floor 37
44.0 k	Floor 36
41.7 k	Floor 35
39.5 k	Floor 34
37.3 k>	Floer 33
35.2 k>	Flocr 32
^{33.2 k} >	Floer 31
31.2 k	Floor 30
29,3 k>	Flocr 29
20 D I+	Elean 29
20.0 K	Floor 27
24.0 K>	FIDGE Zr
22.2 K	Floor 20
20.0 K	Floer 24
17.5k	Floer 23
16.1 k	Floer 22
14-0 k	Floer 21
13.5 k	Flocr 20
12.2 <	Floor 19
11.0 k	Floor 18
9.90 k	Floer 17
8.84 k	Floer 16
7.94 k	Flocr 15
6.87 k	Floor 14
6.11 k -	Floor 13
5.19 k _	Floor 12
4.43 K _	Floer 11
3.73 k	Flocr 10
3.09 k _	Floor 9
2.51 k	Floor 8
1.99 k	Floor 7
1.53 k	Floor 6
1.13 k	
3.42 k	Floor 4
2.17 k	Floor 3
1.14 k	Floor 2

Figure 13: Lateral Seismic Forces, N/S and E/W

Miscellaneous Loads

Other miscellaneous loads were considered for the existing design of the New York Times Building and will need to be addressed in the future for this fifth year capstone project. The first condition which needs to be addressed is the thermal loading on the structure of the building, which causes deflections throughout the structure. Thornton Tomasetti designed the structure using a ΔT of -10 to 130 °F after consulting historical temperature data for New York City and the National Building Code of Canada. The Canadian Code was used because it provides descriptive guidelines for thermal design. In order to counter the deflections due to thermal fluctuations, thermal trusses were added to the east and west faces of the mechanical floors where outriggers where not required for lateral load resistance. These trusses improved thermal deflections to L/300. The location of these thermal trusses is highlighted in teal in Figure 14 below. In addition to thermal loadings, the design of the New York Times Buildings considered loadings due to impact and blasts. This information is confidential and will not be disclosed by the owner or the design team.

Please note that these loadings are merely mentioned in this report and were not analyzed. However, these loadings, especially those due to thermal fluctuations, must be considered and will have to be analyzed in the future.

TYPICAL FLOOR FRAMING SPOT CHECKS

Figure 15 shows the typical bay that was analyzed. Typical interior beams in green, W18x35 [40] c=1.5", and typical edge beams in blue, W12x19 [3], frame into the typical girder in purple, W18x40 [30] c=3/4", which in turn frames into built-up edge box columns or built-up core columns.

Metal Decking

It was determined from Thornton Tomasetti's guidance and the architectural plans that the typical office bay metal decking chosen was a 20 gage, 3 inch deep deck with yield strength of 40 ksi, with 2.5 inch of concrete topping. The following table was taken from Vulcraft page 48 for a 3 inch deep deck:

1								• /											
Total		9	SDI Max. U	nshored		Superimposed Live Load, PSF													
Slab	Deck		Clear	Span								С	lear Spa	n (ftin.)					
Depth	Туре	1 Span	2 Span	3 Span	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10°-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0	13'-6	14'-0
	3VLI22	7'-8	9'-7	9'-7	216	195	149	133	120	109	99	90	83	76	70	64	59	54	50
5"	3VLI21	8'-11	11'-3	11'-4	230	206	187	170	128	116	106	96	88	81	74	68	63	58	54
	3VLI20	9'-6	11'-11	12'-4	241	216	196	178	163	150	111	101	93	85	78	72	66	61	57
(t=2")	3VLI19	10'-8	13'-2	13'-7	265	237	214	194	178	163	151	140	102	94	86	79	73	67	62
	3VLI18	11'-8	14'-1	14'-6	289	261	238	218	201	186	173	161	151	142	106	98	92	86	80
44 PSF	3VLI17	12'-7	14'-11	15'-5	309	278	253	231	212	196	182	170	159	150	141	133	97	91	85
	3VLI16	13'-4	15'-8	15'-11	327	294	267	243	223	206	191	178	167	156	147	139	132	96	89
	3VLI22	7'-0	8'-9	8'-9	247	190	170	152	137	124	113	103	94	87	80	73	67	62	57
5 1/2"	3VLI21	8'-4	10'-4	10'-4	262	235	213	162	146	133	120	110	101	92	85	78	72	66	61
	3VLI20	9'-0	11'-5	11'-9	275	247	223	203	186	140	127	116	106	97	89	82	76	70	65
(t=2 1/2")	3VLI19	10 - 1	12 -7	13-0	302	270	244	222	203	186	172	128	117	107	98	90	83	77	71
	3VLI18	11'-1	13'-5	13'-11	330	298	271	248	229	212	197	184	173	130	121	112	105	98	92
50 PSF	3VLI17	11'-11	14'-3	14'-9	352	317	288	263	242	224	208	194	182	171	128	119	111	104	97
	3VLI16	12'-8	15'-0	15'-5	373	335	304	277	255	235	218	203	190	178	168	159	117	109	102

(N=9) NORMAL WEIGHT CONCRETE (145 PCF)

Figure 16: 3" Vulcraft Metal Deck Loading Table

In Figure 16 in red, the maximum un-shored clear span for three spans is 11 feet and 9 inches. For a typical bay between beams the clear span is 9 feet, therefore the deck meets the clear span criteria. In addition to the span, the superimposed live load is 70 psf live load for office and 40 psf, dead load for office minus the self weight of the composite deck system (see Table 1: Typical Tower Floor Dead Load for loading). With the superimposed live load of 110 psf being less than 186 psf, the capacity of the deck in yellow, the deck meets all criteria and has the necessary strength needed.

Typical Composite Beam

Typical composite beam sizes are W18x35 [40] c=1.5" and W12x19 [3]. Figure 15 displays these beam locations; beams are spaced 10 feet on center and span 40 feet for the W18 and 5 feet and 4 inches for the W12. These members were checked for flexure strength, shear strength, total live load deflection, and construction dead load. The design calculations are included at the end of this report in Appendix B.

After analyzing the typical composite beams, it was found that the W18 and W12 meet all strength and serviceability requirements. It was also found the calculated shear and flexural forces in the beams were fifteen percent less than designed values. This is due to the fifteen percent increase Thornton Tomasetti added in for changes of office space and expansion of light MEP systems. For the W18 beams, the minimum partial composite strength for a neutral axis of one inch meets the requirements, but the number of shear studs is less than the design number of shear studs. Similarly, the minimum partial composite strength for a neutral axis of half an inch meets the requirements, but the number of shear studs is greater than the design number of shear studs. In the case of the W18, the reason to increase shear stud sculd be to allow for more flexural strength and ease of constructability by placing one shear stud every foot as oppose to uneven shear stud spacing. In the case of the W12, the location of neutral axis is smaller than the assumed calculated neutral axis, which causes the number of shear studs to decrease, therefore verifying Thornton Tomasetti's results.

Typical Composite Girder

Typical composite girder size is W18x40 [30] c=3/4". Figure 15 displays the location of the girder, which spans 30 feet. This girder was checked for flexure strength, shear strength, total live load deflection, and construction dead load. The design calculations are included at the end of this report in Appendix B.

After analyzing the typical composite girder, it was found that the W18 meet all strength and serviceability requirements. As with the typical composite beams, the calculated shear and flexural forces in the girder were thirteen percent less than designed values. This could be due to the fifteen percent increase Thornton Tomasetti added in for changes of office space and expansion of light MEP systems for the composite beams. For the W18 girder the minimum partial composite strength for a neutral axis of one and a half inches meets the requirements, but the number of shear studs is more than the design number of shear studs. As with the W12, the location of neutral axis is smaller than the assumed calculated neutral axis, which causes the number of shear studs to decrease therefore verifying Thornton Tomasetti's results.

Typical Column

Typical built-up box columns used in the analysis are 30" by 30" with 4 inch flange plates and 7 inch web plates. Column load takedowns are included at the end of this report in Appendix C. In Table 16 in Appendix C, the column load takedowns include live load reduction and in Table 17 in Appendix C, the column load takedowns include unreduced live loads. The unbraced lengths of the column were determined by floor to floor heights and were assumed to be pinned at the top and bottom. At this time it is unknown if office space live load are unreduced or partially reduced; further investigation is required. The design calculations for the built-up box columns are included at the end of this report in Appendix C.

After analyzing the typical built-up box column at level 6, it was found that it meets all strength and serviceability requirements. The flexural buckling of the built-up box column controls over flexural-torsional buckling of the column, therefore only elastic flexural buckling was checked. In addition to the column meeting the requirements, it was found the column's capacity is four times greater than a factored applied load with reduced live load and is two times greater than a factored applied load with unreduced live load. This large capacity is due to the column's large cross-sectional area which could be a result of blast design in addition to the columns contributing to the tower's lateral system. As stated before, live load reduction can affect the size of the columns.

ANALYSIS & CONCLUSIONS

The gravity system was analyzed for dead and live loads as a confirmation of the loads used in design. The check on the beams yielded a different number of shear studs, possibly because the designers wanted to use even stud spacing or preferred a different level of composite action. The difference in results could also be due to the assumed stud strengths. In addition, inclusion of blast and progressive collapse design could influence these results. Gravity checks done for the columns showed that the sizes were larger than necessary, mostly likely because the columns were used in the lateral system to counteract the overturning moment.

Unfactored seismic and wind forces, as shown by the diagrams in Figures 10, 12, and 13, were analyzed to determine the controlling lateral loading condition. Wind base shear is approximately five times larger than seismic base shear, and wind point loads at each floor are much greater than those induced by an earthquake. This clearly indicates that wind loads control as the design lateral loading condition. In future technical reports, the lateral system will be analyzed in more detail as a check of the bracing and member sizes.

There are several other unique structural challenges that arose during design, but were outside the scope of this report. First, thermal loads were factored into the design due to the exposed structural elements and the large amount of glass in the façade. The building has the potential to expand and contract in extreme temperatures, and Thornton Tomasetti designed members to resist forces induced by these movements. The team utilized the Canadian National Building Code, which has more specific directions for temperature loads, to include thermal effects in their design. This undoubtedly had an impact on design loads, and must be considered in further detail.

In addition, there are large 20 foot cantilevers that create the cruciform shape of the tower, which were not analyzed for loads and deflections in this technical report. However, they presented a unique challenge to the designers and must also be analyzed in the future. The effects of the mast and roof screen walls were also not included in full detail in this report. Finally, the connections and subway system adjacent to the building should be studied to examine how it influenced the design of the structure and foundations.

APPENDIX A: LATERAL SYSTEMS

Figure 19: Typical N/S Outrigger Section (28th Floor)

APPENDIX B: TYPICAL BAY SPOT CHECKS

Typical Beam (W18x35 [40] c=1.5") Material Properties:					
Concrete	$f_c =$	4	ksi		
Beam	F. =	50	ksi		
	$F_u =$	65	ksi		
		20 D			
Spacing:	10.000	ft			
Span:	40.000	ft			
Loads:					
Dead Loads:					
Slab:	0.053	ksf			
Beam Weight:	0.004	ksf			
MEP/Ceiling:	0.025	ksf			
Live Loads:					
Non-Reduced:	0.070	ksf			
Tetal double of	0.915	1.16			
Total dead load.	0.815	KII			
l otal live load:	0.700	KIT			
Const. dead load (unshored):	0.565	klf			
Const. live load (unshored):	0.200	klf			
$w_u = 1.2D + 1.6L =$	2.098	klf			
V _u =w _u l/2	41.960	k			
$M_u = w_u l^2/8$	419.600	ftk			
b _{en} =	120,000	in			
Assume a=	1.000	in			
$Y_2 = t_{slab} - a/2 =$	5.000	in			
	_				
Check I _{req} :	3 500	in			
	220.021	in ⁴		510 000 in	
$I_{req} = 5W_{CDL}I/(384E\Delta)$	320.031	m	<	510.000 m	UK
Check member strength as un-shored:					
$W_{n(unchoract)} = 1.2D + 1.6L =$	0.998	klf			
$M = \frac{1^2}{8}$	100 600	fik	~	249 000 61	OK
Wu(unshored) Wul /0	177.000	IIK		249.000 10	UN ON
$\Sigma Q_n =$	260.000	k			
Check member strength:					
φM _n =	435.000	ftk	>	419.600 ftk	C OK
φV _n =	159.000	k	>	41.960 k	OK
Check a:	0.00			1 000 .	017
$a=2Qn/0.85T_{c}b_{eff}=$	0.637	in	<	1.000 in	OK
Check A					
A=1/360=	1 3 3 2	in			
	0.110		9	1 222 .	OF
$\Delta_{LL} = 5W_{LL} I / (384EI_{LB}) =$	0.119	ш	<	1.555 in	UK
Check studs:	17 200	kins/stud	1	Table 3-21	
# of stude= $\Sigma \Omega / \Omega =$	15.116	therefore use	16,000 -	tude/side	
# of study= $2Q_n/Q_n$ =	Typical	Composito M	18 Applu	cic	
ingule 20	· · ypical (composite W	To Allarys		

Typical Beam (W12x19 [3] c=0") Material Properties:					
Concrete	$\mathbf{f}_{c} =$		4 ksi		
Beam	$F_y =$		50 ksi		
	$F_u =$		65 ksi		
Spacing:	10.000	ft			
Span:	5.333	ft			
Loads:					
Dead Loads:					
Slab:	0.053	ksf			
Beam Weight:	0.002	ksf			
MEP/Ceiling:	0.025	ksf			
Live Loads:					
Non-Reduced:	0.070	ksf			
Total dead load:	0.799	klf			
Total live load:	0.700	klf			
Const. dead load (unshored):	0.549	klf			
Const. live load (unshored):	0.200	klf			
··· -1 2D +1 6I	2 070	1.16			
$W_u = 1.2D + 1.6L =$	2.079	KII L			
$v_u = w_u l/2$	5.545	К			
$M_u = w_u l^2/8$	7.391	ftk			
		•			
b _{eff} =	16.000	in			
A	0.500				
Assume a-	5.250	in in			
$1_2 - t_{slab} - d/2 -$	5.250	ш			
Check I		(
$\Lambda = 1/240 + camber =$	0.267	in			
L =5 14/(284EA)	1.202	in ⁴		06200 in^4	OV
$I_{req} = 5W_{CDL} I / (384E\Delta) =$	1.292	ш	<	96.300 m	OK
Check member strength as un-shored:					
Wu/um/hered=1.2D+1.6L=	0.979	klf			
M = 1 ² /9-	3 190	fik	1	249 000 84	OK
W _u (unshored) ^{-W} u ^I /8 ⁼	5.480	ItK		249.000 Ilk	UK
- 07	69 700	k			
$2Q_{n}$	09.700	K			
Check member strength:					
φM_=	144 000	ftk	>	7.391 ftk	OK
4V =	85 700	k	>	5 543 k	OK
ψ v _n -	05.700	ĸ	-	5.575 K	ON
Check a:					
$a=\Sigma On/0.85 f.b. =$	0.107	in	<	0.500 in	OK
" = qu otoo rebell	0.107	1400 ⁰ 3.	10	in	
Check Arr:					
Λ=1/360=	0.178	in			
A E 14//2045L \-	0.0000		2	0.170 :	OV
$\Delta_{LL} = 5W_{LL}I / (384EI_{LB}) =$	0.0002	m	<	0.178 m	UK
Check studs:	17.000	Linglet 1		T-11-2-21	
Q _n =	17.200	kips/stud		Table 3-21	
# of studs= $\Sigma Q_n/Q_n$ =	4.052	therefore use	e 5.00	o studs/side	

Figure 21: Typical Composite W12 Analysis

Typical Girder (W18x40 [30] c=3/4") Material Properties:					
Concrete	$\mathbf{f}_{c} =$	4	ksi		
Beam	$F_v =$	50	ksi		
	F. =	65	ksi		
Span:	30,000	ft			
Loads:					
Dead Loads:					
P_{W18x35} :	16,300	k			
$P_{W12\times 19}$:	2.131	k			
Beam Weight:	0.040	klf			
Live Loads:	14.000	1.			
P _{W18x35} .	14.000	K la			
P _{W12x19} :	1.80/	ĸ			
Total dead load (Pu):	18,431	k			
Total dead load (wu):	0.040	klf			
Total live load(Pu):	15.867	k			
Const. dead load (unshored):	12.764	k			
Const. dead load (unshored):	0.040	klf			
Const. five foad (unshored):	0.555	ĸ			
$P_{u}=1.2D+1.6L=$	47,503	k			
w _u =1.2D+1.6L=	0.048	klf			
$V_u = w_u l/2 + P_u =$	48.223	k			
$M_u = w_u l^2 / 8 + P_u l / 3$	480.435	ftk			
b _{ett} =	90.000	in			
Assume a=	1.500	in			
$Y_2 = t_{slab} - a/2 =$	4.750	in			
Check I _{req} :		A			
$\Delta = 1/240 + \text{camber} =$	2,250	111 - 4		- 4	0200
$I_{req} = 5w_{DL}l^{\prime\prime}(384E\Delta) + P_{DL}l^{\prime\prime}(28E\Delta) -$	337,126	in'	<	612.000 m	OK
Check member strength as un-shored:					
Puturshored)=1.2D+1.6L=	16.170	k			
w _{u(unshored)} =1.2D+1.6L=	0.048	klf			
$M_{n(unshort)} = w_n l^2 / 8 + P_n l / 3 =$	167.101	ftk	<	294.000 ftk	OK
ΣQ,=	351.000	k			
dM =	516 500	fik	>	480 435 ftk	OK
φV =	159.000	L	5	48 223 L	OK
ψ ν η-	1.33.000	ĸ	-	40.223 K	UK
Check a:					
a=2Qn/0.85feben=	1.147	in	<	1.500 in	OK
Check Δ_{LL} :					
Δ _{LL} =I/360=	1.000	in			
$\Delta_{LL} = P_{LL} I^3 / (28 E I_{LB}) =$	0.680	in	<	1.000 in	OK
Check studs:	1	11 1. 1			
$Q_n =$	17.200	kips/stud	31.000	Table 3-21	
# of studs= $2Q_n/Q_n$ =	20,407	mererore use	21,000	studs/side	

Figure 22: Typical Composite Girder

APPENDIX C: TYPICAL COLUMN CHECKS

COLUMN A4	(Located in Offi	ce Area) LL Re	duction												
Story level	Column Below Level	Tributary Area (ft ²)	Live Load Influence Area (ft ²)	Live Load Reduction Factor	Dead Load (kips)	Wall Load (kips)	Roof Live Load (kips)	Snow Load (kips)	Floor Live Load (kips)	Column Load 1.4D (kips)	Column Load 1.2D+1.6L+.5(Lr or S) (kips)	Column Load 1.2D+1.6(Lr or S)+L (kips)	Column Load 1.2D+L+0.5(Lr or S) (kips)	Column Load 1.2D+L+0.2S (kips)	Column Design Load
52 Roof	1	765	0	1.00	76.48	28.41	76.48	13.38		146.85	164.11	248.25	164.11	128.55	248.25
51 Mech	2	1530	2730	1.00	147.61	38.97			95.61	261.22	415.11	441.88	357.75	322.19	441.88
50	3	2295	5459	0.45	218.75	44.69			119.86	368.81	546.14	558.36	474.23	438.66	558,36
49	4	3059	8189	0.42	289,88	50.05			142.12	475.90	673.55	672.41	588.28	552.71	673.55
48	5	3824	10919	0.40	361.01	55.42			163.53	582.99	799.60	785.62	701.48	665.92	799.60
47	6	4589	13648	0.40	432.14	60.78			184.95	690.08	925.66	898.82	814.69	779.13	925,66
46	7	5354	16378	0.40	503,27	66.14			206.37	797.17	1051.72	1012.03	927.90	892.33	1051.72
45	8	6119	19108	0.40	574.40	71.50			227.78	904.26	1177.77	1125.24	1041.11	1005.54	1177,77
44	9	6884	21838	0.40	645.53	76.87		-	249,20	1011.35	1303.83	1238.45	1154.31	1118.75	1303.83
43	10	7648	24567	0.40	716.66	82.23			270.61	1118.44	1429.89	1351.65	1267.52	1231.95	1429.89
42	11	8413	27297	0.40	787.79	87.59			292.03	1225.53	1555.94	1464.86	1380.73	1345.16	1555.94
41	12	9178	30027	0.40	858.92	92.95			313.44	1332.62	1682.00	1578.07	1493.93	1458.37	1682.00
40	13	9943	32756	0.40	930.05	98.32		-	334.86	1439.71	1808.06	1691.27	1607.14	1571.58	1808.06
39	14	10708	35486	0.40	1001.18	103.68			356.27	1546.80	1934.11	1804.48	1720.35	1684.78	1934.11
. 38	15	11473	38216	0.40	1072.31	109.04			377.69	1653.89	2060.17	1917.69	1833.56	1797.99	2060.17
37	16	12238	40945	0.40	1143.44	114.40			399.11	1760.98	2186.23	2030.90	1946.76	1911.20	2186.23
36	17	13002	43675	0.40	1214.57	119.77		-	420.52	1868.07	2312.28	2144.10	2059.97	2024.40	2312.28
35	18	13767	46405	0.40	1285.70	125.13			441.94	1975.16	2438.34	2257.31	2173.18	2137.61	2438.34
34	19	14532	49134	0.40	1356.83	130.49			463.35	2082.25	2564.40	2370.52	2286.38	2250.82	2564.40
33	20	15297	51864	0.40	1427.96	135.85			484.77	2189.34	2690.45	2483.72	2399.59	2364.03	2690.45
32	21	16062	54594	0.40	1499.09	141.22			506.18	2296.43	2816.51	2596.93	2512.80	2477.23	2816.51
31	22	16827	57323	0.40	1570.22	146.58			527.60	2403.52	2942.57	2710.14	2626.01	2590.44	2942.57
30	23	17591	60053	0.40	1641.35	151.94	-		549.02	2510.61	3068.62	2823.35	2739.21	2703.65	3068.62
29	24	18356	62783	0.40	1712.49	157.30			570.43	2617.70	3194.68	2936.55	2852.42	2816.86	3194.68
28 Mech	25	19121	65513	1.00	1783.62	168.03			666.04	2732.30	3445.87	3130.39	3046.25	3010.69	3445.87
27	20	19886	68242	0.40	1854./5	1/3.20			687.45	2839.12	35/1./0	3243.30	3159.23	3123.00	35/1.70
26	27	20651	70972	0.40	1925.88	1/8.56			/08.8/	2946.21	3697.75	3356.57	3272.43	3236.87	3697.75
25	28	21410	75702	0.40	2068.14	185.92			750.28	3055.30	3823.81	3409.77	3383.04	3350.07	3823.81
24	29	22180	70451	0.40	2008.14	104.65			751.70	3160.39	3949.87	3582.98	3498.83	3403.28	4075.02
23	30	22945	/9101	0.40	2139.27	200.01			704.52	3207.40	4075.92	3090.19	3012.03	3570.49	4075.92
22	22	23/10	84620	0.40	2210,40	200.01			194.55 915.05	3374.37	4201.98	3809.39	3723.20	3069.70	4201.90
20	32	24475	87350	0.40	2261.55	205.57			837.36	3588 75	4328.04	4035.81	3051.68	3016.11	4328.04
10	33	25240	00080	0.40	2352.00	210.73		-	057.50	3605.84	4454.09	4035.81	4064.98	4020.22	4454.09
19	35	26005	92809	0.40	2425.79	210.10			880.19	3802.93	4380.13	4149.02	4004.33	4029.52	4380.13
17	36	27534	95530	0.40	2566.05	226.82			901.61	3910.02	4832.26	4375.43	4291 30	4255 73	4832.26
16	37	28299	98269	0.40	2637.18	232.18			923.02	4017.11	4958.32	4488.64	4404 50	4368.94	4958 32
15	38	20255	100998	0.40	2708 31	237.55			944 44	4124 20	5084 38	4601.84	4517.71	4482.15	5084.38
14 Cafeteria	39	29829	103728	1.00	2779.44	242.91		1	1020.92	4231.29	5298.54	4770.12	4685.99	4650.42	5298.54
13	40	30594	106458	0.40	2850.57	248.27			1042 34	4338.38	5424.60	4883 33	4799.19	4763.63	5424.60
12	41	31359	109188	0.40	2921.70	253.44			1063.76	4445.20	5550.42	4996 30	4912.17	4876.60	5550.42
11	42	32123	111917	0.40	2992.83	259.00			1085.17	4552.56	5676.71	5109.74	5025.61	4990.04	5676.71
10	43	32888	114647	0.40	3063.96	264.36			1106.59	4659.65	5802.77	5222.95	5138.82	5103.25	5802.77
9	44	33653	117377	0.40	3135.09	269 72			1128.00	4766.74	5928.82	5336.16	5252.02	5216.46	5928.82
8	45	34418	120106	0.40	3206.23	275.08			1149.42	4873.83	6054.88	5449.36	5365.23	5329.67	6054.88
7	46	35183	122836	0.40	3277.36	280.45			1170.83	4980.92	6180.94	5562.57	5478.44	5442.87	6180.94
6	47	35948	125566	0.40	3348.49	285.81			1192.25	5088.01	6306.99	5675.78	5591.65	5556.08	6306.99
5	48	36713	128295	0.40	3419.62	291.17			1213.66	5195.10	6433.05	5788.99	5704.85	5669.29	6433.05
4	49	37477	131025	0.40	3490.75	296,76			1235.08	5302.51	6559.38	5902.46	5818.33	5782.76	6559,38
3	50	38242	133755	0.40	3561.88	302.79			1256.50	5410.53	6686.24	6016.47	5932.34	5896.77	6686.24
2	51	39007	136484	0.40	3633.01	313.32			1277.91	5524.85	6818.49	6135,88	6051.74	6016.18	6818,49
1	52	39772	139214	0.40	3704.14	319.56			1299.33	5633.17	6945.60	6250,14	6166.00	6130.44	6945.60

Table 16: Column A4 load takedowns with LL reduction

COLUMN A4	(Located in Offi	ce Area) No LL	Reduction												
Story level	Column Below Level	Tributary Area (ft ²)	Live Load Influence Area (ff ²)	Live Load Reduction Factor	Dead Load (kips)	Wall Load (kips)	Roof Live Load (kips)	Snow Load (kips)	Floor Live Load (kips)	Column Load 1.4D (kips)	Column Load 1.2D+1.6L+.5(Lr or S) (kips)	Column Load 1.2D+1.6(Lr or S)+L (kips)	Column Load 1.2D+L+0.5(Lr or S) (kips)	Column Load 1.2D+L+0.2S (kips)	Column Design Load
52 Roof	1	765	0	1.00	76.48	28.41	95.61	13.38		146.85	164.11	248.25	164.11	128.55	248.25
51 Mech	2	1530	2730	1.00	147.61	38.97			76.48	261.22	384.52	422.76	338.63	303.07	422.76
50	3	2295	5459	1.00	218.75	44.69			152.97	368.81	599.12	591.47	507.34	471.77	599.12
49	4	3059	8189	1.00	289.88	50.05			229.45	475.90	813.28	759.74	675.61	640.05	813.28
48	5	3824	10919	1.00	361.01	55.42			305.94	582.99	1027.45	928.02	843.89	808.32	1027.45
47	0	4269	15048	1.00	432.14	60.78			382.42	797.17	1/41.02	1096.30	1012.10	970.00	1241.02
45	8	6119	19108	1.00	574.40	71.50			535.39	904 26	1669.95	1432.85	1348 71	1313.15	1669.95
44	9	6884	21838	1.00	645.53	76.87			611.88	1011.35	1884.12	1601.12	1516.99	1481.43	1884.12
43	10	7648	24567	1.00	716.66	82.23			688.36	1118.44	2098.28	1769.40	1685.27	1649.70	2098.28
42	11	8413	27297	1.00	787.79	87.59			764.84	1225.53	2312.45	1937.68	1853.54	1817.98	2312.45
41	12	9178	30027	1.00	858.92	92.95			841.33	1332.62	2526.62	2105.95	2021.82	1986.25	2526.62
40	13	9943	32756	5 1.00	930.05	98.32			917.81	1439.71	2740.78	2274.23	2190.09	2154.53	2740.78
39	14	10708	35486	5 1.00	1001.18	103.68			994.30	1546.80	2954.95	2442.50	2358.37	2322.81	2954.95
38	15	11473	38216	5 1.00	1072.31	109.04			1070.78	1653.89	3169.12	2610.78	2526.65	2491.08	3169.12
37	16	12238	40945	1.00	1143.44	114.40			1147.27	1760.98	3383.28	2779.06	2694.92	2659.36	3383.28
36	17	13002	43675	1.00	1214.57	119.77			1223.75	1868.07	3597.45	2947.33	2863.20	2827.63	3597.45
30	18	13/0/	40405	1.00	1285.70	125.13			1300.23	19/5.10	5811.01	3115.01	3031.47	2995.91	3811.01
22	20	14332	51864	1.00	1330.85	130.49			1370.72	2082.23	4023.78	2452.16	3199.73	2222.46	4025.76
32	20	16062	54504	1.00	1427.90	141.22			1520 69	2189.54	4454.11	3620.43	3536.30	3500.74	4454.11
31	22	16827	57323	1.00	1570.22	146.58			1606.17	2403.52	4668.28	3788.71	3704.58	3669.01	4668.28
30	23	17591	60053	1.00	1641.35	151.94			1682.66	2510.61	4882.45	3956.99	3872.85	3837.29	4882.45
29	24	18356	62783	1.00	1712.49	157.30			1759.14	2617.70	5096.61	4125.26	4041.13	4005.56	5096.61
28 Mech	25	19121	65513	1.00	1783.62	168.03			1835.63	2732.30	5317.22	4299.97	4215.84	4180.28	5317.22
27	26	19886	68242	1.00	1854.75	173.20			1912.11	2839.12	5531.15	4468.02	4383.88	4348.32	5531.15
26	27	20651	70972	1.00	1925.88	178.56			1988.59	2946.21	5745.31	4636.29	4552.16	4516.59	5745.31
25	28	21416	73702	1.00	1997.01	183.92			2065.08	3053.30	5959.48	4804.57	4720.43	4684.87	5959.48
24	29	22180	76431	1.00	2068.14	189.28			2141.56	3160.39	6173.65	4972.84	4888.71	4853.15	6173.65
23	30	22945	79161	1.00	2139.27	194.65			2218.05	3267.48	6387.81	5141.12	5056.99	5021.42	6387.81
22	31	23/10	81891	1.00	2210.40	200.01			2294.53	33/4.5/	6601.98	5309.40	5225.26	5189.70	6601.98
20	32	24475	84020	1.00	2281.55	205.37			23/1.02	3481.00	7020.21	5645.05	5561.91	5526.25	0810.15
19	33	25240	90080	1.00	2352.00	210.75			2523.98	3695.84	7030.31	5814.22	5730.09	5694 53	7050.51
18	35	26770	92809	1.00	2494.92	221.46			2600.47	3802.93	7458.65	5982.50	5898.37	5862.80	7458.65
17	36	27534	95539	1.00	2566.05	226.82			2676.95	3910.02	7672.81	6150.77	6066.64	6031.08	7672.81
16	37	28299	98269	1.00	2637.18	232.18			2753.44	4017.11	7886.98	6319.05	6234.92	6199.35	7886.98
15	38	29064	100998	3 1.00	2708.31	237.55			2829.92	4124.20	8101.15	6487.33	6403.19	6367.63	8101.15
14 Cafeteria	39	29829	103728	3 1.00	2779.44	242.91			2906.41	4231.29	8315.31	6655.60	6571.47	6535.90	8315.31
13	40	30594	106458	1.00	2850.57	248.27			2982.89	4338.38	8529.48	6823.88	6739.75	6704.18	8529.48
12	41	31359	109188	3 1.00	2921.70	253.44			3059.38	4445.20	8743.41	6991.92	6907.79	6872.22	8743.41
11	42	32123	111917	1.00	2992.83	259.00			3135.86	4552.56	8957.81	7160.43	7076.30	7040.73	8957.81
10	43	32888	114647	1.00	3063.96	264.36			3212.34	4659.65	9171.98	7328.71	7244.57	7209.01	9171.98
9	44	33653	117377	1.00	3135.09	269.72			3288.83	4766.74	9386.15	7496.98	7412.85	7377.28	9386.15
7	45	34418	120106	1.00	3206.23	275.08			3305.31	4873.83	9600.31	7605.26	/ 581.13	/040.00	9000.31
6	40	35048	122830	1.00	3211.30	260.45			3519.59	5088.01	10028.65	8001.81	7017.68	7882.11	10029.65
5	48	36713	123300	1.00	3419.62	205.01			3594 77	5195.10	10028.03	8170.00	8085.95	8050 39	10242.81
4	49	37477	131025	1.00	3490.75	296.76			3671.25	5302.51	10457.25	8338.63	8254 50	8218.93	10457.25
3	50	38242	133755	5 1.00	3561.88	302.79			3747.73	5410.53	10672.22	8507.71	8423.58	8388.01	10672.22
2	51	39007	136484	1.00	3633.01	313.32			3824.22	5524.85	10892.58	8682.18	8598.05	8562.48	10892.58
1	52	39772	139214	1.00	3704.14	319.56			3900.70	5633.17	11107.80	8851.51	8767.38	8731.81	11107.80

Table 17: Column A4 load takedowns without LL reduction

Puilt up Estavion Por Column	-						
Material Properties:	1						
Beam	F., =	50 ks	i				
	$F_{\mu} =$	65 ks	i				
Geometric Properties:							
	d=	30 in					
	b _f =	30 in					
	t _f =	4 in					
	h=	22 in					
	$t_w =$	7 in					
Calculate built-up section pro	perties (ignoring	z fillet welds):					
	A ₁ -	120 in	2	L	a	20440 in4	
	$A_2 =$	154 in	2	I.,	=	6211 in ⁴	
	A.=	154 in	2	L	.=	6211 in ⁴	
	A.=	120 in	2	-xo I	_=	20440 in4	
	Δ =	548 in	2	1x3	.=	9000 in ⁴	
	$N\Delta =$	15 in		*** T	-=	11755 in ⁴	
	I	53 302 67 in	4	رد ا ۲		11755 in^4	
	NA -	35,502.07 III		1 ₅₅		$11/35 \text{ m}^4$	
	INA _{yy} -	11 510 67 in	4	173	-4	9000 m	
	I _{yyT} =	41,510.67 in					
	r_x-	9.802 in 8.702 in					
	I _y —	8.705 m					
Check Slenderness ratio:							
	K.=K.=	10	olumn is pinned in	x-direction			
	L _x =L _y =	165 in	•				
k	$L/r \le 200$						
	$K_x L_x / r_x =$	16.73	<	2	00 OK	11	
	$K_y L_y / r_y =$	18.96	<	2	00 OK		
Calculate the elastic flexural b	ouckling stress:						
Since the unbraced length is the	same for both av	es the v-v avis w	ill govern by inspe	ction			
onite are another rengan to are			in gerein of more				
$K_y L_y / r_y =$	18.96	<	$4.71(E/F_y)^{1/2} =$	133.	68 Fcr=[0.658	^(Fy/Fe)]Fy	
$F_e = \pi^2 E / (KL/r)^2 =$	796.36 ksi						
$F_{er} = [0.658^{Fy/Fe}]F_y =$	48.70 ksi						
Torsional buckling will not gov	ern since KL _y > F	L _z ,therefore no n	eed to check				
elastic critical torsional buckling	g stress						
$\phi P_n = 0.9 F_{cr} A_q =$		24,020.40 k		>	6	,433.05 k	
(Neglecting LL Reduction)							
$\phi P_n = 0.9 F_{cr} A_g =$		24,020.40 k		>	10	,242.81 k	

Figure 23: Built-up Exterior Box Column Analysis

APPENDIX D: WIND ANALYSIS

Method 2 Wind Loa	id Design Va	riables	
Variable	Value	Unit	Reference
V	110	miles/hr	ASCE 7-05 6.5.4
K _u	0.85		ASCE 7-05 6.5.4.4
Occupancy Cat.	Ш		IBC Table 1604.5
	1.15		ASCE 7-05 6.5.5
Surf. Rough. Cat.	В		ASCE 7-05 6.5.2
Exp. Cal.	В		ASCE 7-05 6.5.6
K _{zt}	1		ASCE 7-05 6.5.7
α	7.0		ASCE 7-05 6.5.6.6
Zg	1200		ASCE 7-05 6.5.6.6

Table 18: Wind Load Design Variables

Gust Factor {Tower}						
Variable	Equation	Dire	ction	Unit	Reference (ASCE 7)	Comments
- (f)		E/W	N/S		. ,	
n ₁ (_{n1})	150/h	0.20121	0.20121		C6.5.8	Flexible Structure
gQ = gv		3.4	3.4		6.5.8.2	
gr	(2LN(3600n ₁)) ^{1/2} + (0.577/(2LN(3600n ₁)) ^{1/2}	3.7881	3.7881		6.5.8.2	
h		745.5	745.5	ft		
z bar	.6h	447.3	447.3	ft		
Z _{min}		30	30	ft	Table 6-2	z bar <u>></u> z _{min} (ok)
с		0.3	0.3		Table 6-2	
l _z	c(33/z) ^{1/6}	0.1943	0.1943		6.5.8.1	
l		320	320	ft	Table 6-2	
3		0.3333	0.3333		Table 6-2	
Ļ	ℓ(z/33) ^ε	762.98	762.98	ft	6.5.8.1	
В		194.00	157.00	ft		
L		157.00	194.00	ft		
Q	(1/(1+0.63((B+h)/L ₂) ^{0.63}) ^{1/2}	0.76288	0.76690		6.5.8.1	
V		110	110	miles/hr	6.5.4	
b bar		0.45	0.45		Table 6-2	
α bar		0.25	0.25		Table 6-2	
Vz	b(z/33)~V(88/60)	139.3022	139.3022	ft/s	6.5.8.2	
N ₁	n ₁ L _z /V _z	1.1020	1.1020		6.5.8.2	
R _n	7.47N ₁ /(1+10.3N ₁) ^{5/3}	0.12474	0.12474		6.5.8.2	
η (R _h)	4.6n1h/Vz	4.9533	4.9533		6.5.8.2	
R _h	1/η - (1/2η ²)(1-e ^{-2η})	0.18151	0.18151		6.5.8.2	
η (R _B)	4.6n1B/Vz	1.2890	1.0431		6.5.8.2	
R _B	1/η - (1/2η ²)(1-e ^{-2η})	0.49772	0.55619		6.5.8.2	
η (R _L)	15.4n ₁ L/V ₂	3.4923	4.3153		6.5.8.2	
RL	1/η - (1/2η ²)(1-e ^{-2η})	0.24539	0.20489		6.5.8.2	
β		0.01	0.01		C6.5.8	
R	$((1/\beta)(R_nR_hR_B(.53+0.47R_L)))^{1/2}$	0.852786	0.888092		6.5.8.2	
G _f	0.925(1+1.7l _z (g _Q ² Q ² +g _R ² R ²) ^{1/2})/ (1+1.7g _y l _z)	1.032	1.048		6.5.8.2	

Table 19: Tower Gust Factor

E/W Wind Direct	tion (Tower) {h/L >1.0	& q < 10}								
L/B	Wall Pressure Coeff. (Cp)									
	Windward	Leeward	Side							
0.809	0.8	-0.5	-0.7							
h/L	Roof Pressure Coeff. (Cp)									
	Roof Area (ft ²)	Reduction	Ср							
4.748	27400	0.8	-1.040							
Internal Pressure										
GCpi	0.18									
[F 6-5, ASCE 7-05	•]									

Table 20: Tower E/W Wind Pressure Coefficients

L/B	Wall Pressure Coeff. (Cp)									
-, -	Windward	Leeward	Side							
1.236	0.8	-0.453	-0.7							
h/L	Roof Pressure Coeff. (Cp)									
	Roof Area (ft')	Reduction	Ср							
3.843	27400	0.8	-1.040							
ernal Pressure										
GC _{pt}	0.18									

[F 6-5, ASCE 7-05] Table 21: Tower N/S Wind Pressure Coefficients

Figure 24: Typical Wind Force Calculation

Gust Factor {Po	dium}				
Variable	Equation	N/S	Unit	Reference (ASCE 7)	Comments
n 1	100/h	1.16279		C6.5.8	Rigid Structure
g _q = g _v		3.4		6.5.8.2	
h		86	ft		
z bar	.6h	51.6	ft		
Z _{min}		30	ft	Table 6-2	z bar <u>></u> z _{min} (ok)
c		0.3		Table 6-2	
l _z	c(33/z) ^{1/6}	0.2785		6.5.8.1	
£		320	ft	Table 6-2	
3		0.3333		Table 6-2	
L <u>,</u>	ℓ(z/33) ^e	371.42	ft	6.5.8.1	
В		245.00	ft		
Q	(1/(1+0.63((B+h)/L _z) ^{0.63}) ^{1/2}	0.79408		6.5.8.1	
G	.925((1+1.7g ₀ I,Q)/(1+1.7g ₀ I,))	0.80752		6.5.8.1	

Table 22: Podium Gust Factor

N/S Wind Directi	ion Cp (Pod	ium) {h/L ≤	0.5 & θ < 10)}							
L/B		v	Wall Pressure Coeff. (Cp)								
	Windward		Leeward		Side						
0.759	0	.8	-0.5		-0.7						
h/L		R	Roof Pressure Coeff. (Cp)								
	0' - 34'	34'	- 68'	68' •	136'	> 136'					
0.162	-0.238	-0.1	238	38 -0.2		-0.190					
Internal Pressure	•										
GC _{pi}	0.18										
[F 6-5, ASCE 7-05]										

Table 23: Podium N/S Wind Pressure Coefficients

Calculated Wind	Pressures i	n North/So	uth Direction of Podiu	m {Using Method 2, AS	CE 7-05}		
	Height	K _z a	q _z & q _h (psf) {.00256K _z K _{zt} K _d V ² I}	External Pressure (psf)	Internal Pressure (psf)	Net Pr p (p	essure osf)
	(2)			{qGC _p }	$\{q_hGC_{pi}\}$	+ (GC _{pi})	- (GC _{pi})
	15.0	0.57	17.40	11.2	5.2	6.1	16.4
	33.4	0.72	21.87	14.1	5.2	9.0	19.3
	48.9	0.81	24.39	15.8	5.2	10.6	20.9
windward	63.8	0.87	26.31	17.0	5.2	11.8	22.2
	77.8	0.92	27.85	18.0	5.2	12.8	23.2
	86.0*	0.95	28.66	18.5	5.2	13.4	23.7
Leeward	All		28.66	-11.6	5.2	-16.7	-6.4
	86.0 ^b		28.66	-5.5	5.2	-10.7	-0.3
Reaf	86.0 ^c		28.66	-5.5	5.2	-10.7	-0.3
ROOT	86.0 ^d		28.66	-4.8	5.2	-9.9	0.4
	86.0 °		28.66	-4.4	5.2	-9.6	0.8

* Top of Podium

a Kz = 2.01(15/zg)2/a {zg < 15ft} -or- Kz = 2.01(z/zg)2/a {15 ft < z < zg} [T 6-2, ASCE 7-05]

^b Windward edge to 34'

^c 34' to 68'

^d68' to 136'

^e 136' to 186'

Note: Wind pressures on East/West direction of podium were not calculated because East & West faces are not exposed.

Table 24: North/ West Wind Pressure on Podium

Calculated Wind Forces in North/South Direction of Podium{Using Method 2, ASCE 7-05}				
Level	Height Above Ground (ft)	Load (kips)	Shear (kips)	Moment (ft-kips)
2	25.66	129	370	3322
3	41.13	104	266	4259
4	56.59	104	162	5901
5	70.92	102	61	7210
6	86.00	61	0	5204
Total	86.00	499	499	25895

Table 25: Wind Loads, Shears & Moment on Podium

18.5 psf	Roof	
400 4	Floor 5	
18.0 psf 17.0 psf 15.8 psf	Floor 4	
	Floor 3	
	Floor 2	
14.1 psf		
11.2 psf	Floor 1	11.6 psf

Figure 25: Podium Wind Pressure Diagram

Figure 26: Podium Wind Force Diagram

APPENDIX E: SEISMIC ANALYSIS

Seismic Weight by Floor								
	a	area (sf) w _i (psf)		141 (#1	1 (0)			
level	floor	façade	floor	façade	vv _i (#)	n _x (π)	n _i (π)	w _i *h _i "
1	96625	17639	113	13	11147926.04	25.20	25.2	7.08E+09
2	96625	10828	113	13	11059390.63	15.47	40.7	1.83E+10
3	96625	10828	113	13	11059390.63	15.47	56.1	3.49E+10
4	96625	10026	113	13	11048963.54	14.32	70.5	5.49E+10
5	21550	9625	113	13	2560275	13.75	84.2	1.82E+10
6	21550	9625	113	13	2560275	13.75	98.0	2.46E+10
7	21550	9625	113	13	2560275	13.75	111.7	3.19E+10
8	21550	9625	113	13	2560275	13.75	125.5	4.03E+10
9	21550	9625	113	13	2560275	13.75	139.2	4.96E+10
10	21550	9625	113	13	2560275	13.75	153.0	5.99E+10
11	21550	9625	113	13	2560275	13.75	166.7	7.12E+10
12	21550	9625	113	13	2560275	13.75	180.5	8.34E+10
13	21550	10442	113	13	2570891.667	14.92	195.4	9.81E+10
14	21550	8808	113	13	2549658.333	12.58	208.0	1.10E+11
15	21550	9625	113	13	2560275	13.75	221.7	1.26E+11
16	21550	9625	113	13	2560275	13.75	235.5	1.42E+11
17	21550	9625	113	13	2560275	13.75	249.2	1.59E+11
18	21550	9625	113	13	2560275	13.75	263.0	1.77E+11
19	21550	9625	113	13	2560275	13.75	276.7	1.96E+11
20	21550	9625	113	13	2560275	13.75	290.5	2.16E+11
21	21550	9625	113	13	2560275	13.75	304.2	2.37E+11
22	21550	9625	113	13	2560275	13.75	318.0	2.59E+11
23	21550	9625	113	13	2560275	13.75	331.7	2.82E+11
24	21550	9625	113	13	2560275	13.75	345.5	3.06E+11
25	21550	9625	113	13	2560275	13.75	359.2	3.30E+11
26	21550	9625	113	13	2560275	13.75	373.0	3.56E+11
27	21550	10179	113	13	2567479.167	14.54	387.5	3.86E+11
28	21550	19279	113	13	2685779.167	27.54	415.0	4.63E+11
29	21550	9625	113	13	2560275	13.75	428.8	4.71E+11
30	21550	9625	113	13	2560275	13.75	442.5	5.01E+11
31	21550	9625	113	13	2560275	13.75	456.3	5.33E+11
32	21550	9625	113	13	2560275	13.75	470.0	5.66E+11
33	21550	9625	113	13	2560275	13.75	483.8	5.99E+11
34	21550	9625	113	13	2560275	13.75	497.5	6.34E+11
35	21550	9625	113	13	2560275	13.75	511.3	6.69E+11
36	21550	9625	113	13	2560275	13.75	525.0	7.06E+11
37	21550	9625	113	13	2560275	13.75	538.8	7.43E+11
38	21550	9625	113	13	2560275	13.75	552.5	7.82E+11
39	21550	9625	113	13	2560275	13.75	566.3	8.21E+11
40	21550	9625	113	13	2560275	13.75	580.0	8.61E+11
41	21550	9625	113	13	2560275	13.75	593.8	9.03E+11
42	21550	9625	113	13	2560275	13.75	607.5	9.45E+11
43	21550	9625	113	13	2560275	13.75	621.3	9.88E+11
44	21550	9625	113	13	2560275	13.75	635.0	1.03E+12
45	21550	9625	113	13	2560275	13.75	648.8	1.08E+12
46	21550	9625	113	13	2560275	13.75	662.5	1.12E+12
47	21550	9625	113	13	2560275	13.75	676.3	1.17E+12
48	21550	9625	113	13	2560275	13.75	690.0	1.22E+12
49	21550	9625	113	13	2560275	13.75	703.8	1.27E+12
50	21550	10063	113	13	2565962.5	14.38	718.2	1.32E+12
51	21550	18664	113	13	2677786.333	26.66	744.8	1.49E+12
52	21550	12306	113	13	2595128	17.58	762.4	1.51E+12
ROOF	27400	0	200	13	5480000	0.00	762.4	3.19E+12
				2.00	1/2979.631	K	zw _i ≁h _i	2.95E+13

Table 26: Seismic Weight by Floor

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

Lateral Seismic Force				
level	C _{vx}	Fx		
1	0.0002	0.441		
2	0.0006	1.139		
3	0.0012	2.170		
4	0.0019	3.416		
5	0.0006	1.131		
6	0.0008	1.530		
7	0.0011	1.990		
8	0.0014	2.510		
9	0.0017	3.090		
10	0.0020	3.730		
11	0.0024	4.431		
12	0.0028	5.192		
13	0.0033	6.111		
14	0.0037	6.867		
15	0.0043	7.837		
16	0.0048	8.839		
17	0.0054	9.902		
18	0.0060	11.025		
19	0.0067	12.208		
20	0.0073	13.451		
21	0.0080	14,755		
22	0.0088	16.119		
23	0.0096	17.543		
24	0.0104	19.027		
25	0.0112	20 572		
26	0.0121	22.177		
27	0.0131	24.008		
28	0.0157	28.811		
29	0.0160	29.314		
30	0.0170	31.225		
31	0.0181	33.195		
32	0.0192	35.226		
33	0.0203	37.317		
34	0.0215	39,468		
35	0.0227	41.680		
36	0.0240	43,952		
37	0.0252	46.284		
38	0.0265	48.677		
39	0.0279	51.129		
40	0.0292	53.642		
41	0.0306	56.216		
42	0.0321	58.849		
43	0.0336	61.543		
44	0.0351	64.298		
45	0.0366	67.112		
46	0.0382	69.987		
47	0.0398	72.922		
48	0.0414	75,917		
49	0.0431	78,973		
50	0.0449	82.415		
51	0.0504	92.511		
52	0.0512	93,938		
ROOF	0.1081	198.36		
	V=ΣE, (k)	1834.2		

Soil Classification				
code	site class	reference	comments	
<u>NYCBC:</u>	2-65 (medium hard rock)	T 11-2	recommended by geotechnical report	
	4-65 (soft rock)	T 11-2	in areas of lower bearing capacity	
ASCE 7-05:	seismic design category C	T 20.3-1	conservative estimate	

Table 27: Soil Classification

Spectral Response Acceleration				
T=0).2s	T=1.0s		
S _{MS}	0.436	S _{M1}	0.119	
S _{DS}	0.291	S _{D1}	0.08	

Table 28: Spectral Response Acceleration

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009

SEISMIC FORCE CAL	CULATIONS:
+ SOIL CLASS (FICATIO	SDC C-ASCET-05
+ SPE / TPA PESPONS	E ACCELEPATION
PARAMETERS:	
- Ubing USGS GROU TOOL :	IND MOTION PARAMETER
LAT: 40.7561 LONG: -73.990	92 FOR NY TIMES ADDRESS (ITOUCH MAP, COM)
- SDC C: Fa=1. Fr=1.	2 LATLONG.HTTAL) 7
T=0.25 Sms	5 = 0.436g 505 = 0.291g
T=1.05 SMI	- 0.119 g 501 = 0.080g
(ASCE 7-05 11.4	.3 \$ 11.4.4)
- OCCUPANCY CATE	EGORN I
TILIS-1 (ASCE)	: I = 1,25
T11.6-1: 505 =	0.2919 > 0.167 - SOCB - 0.33
T11.6-2: 501=	0.000g 70.067 -> SDCB < 0.133
" USE SOL O	IN CALCULATIONS
- CH, 11.6 : 5, - 0,75	> - CHECK REQUIREMENTS:
11, 4, 5 Ts=	$\frac{SDI}{SDS} = \frac{0.080}{0.291} = 0.2755$
0.61	520,2205
(2.8,2.1) (a	$= (1007)(7624)^{0.75}$ $(1007)(7624)^{0.75}$
#1: T < > @T	= 2.9025
2,9025 ×	0.2205 -> CANNOT USE TILG-LONLY

Figure 27: Seismic Calculations and Variables

Figure 28: Seismic Equivalent Lateral Force Calculations

Barben | Bonfanti | Perez IPD/BIM Structural Option Dr. Andres Lepage 10/05/2009 The New York Times Building New York, NY Technical Report #1

APPENDIX F: SITE PHOTOS

Figure 29: Exterior X-bracing

Figure 31: Box Column

Figure 32: Outrigger on 28th Floor